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Abstract
Program verification using Hoare-style techniques requires many
logical annotations. We have previously developed a generic anno-
tation inference algorithm that weaves in all annotations required
to certify safety properties for automatically generated code. It us-
es patterns to capture generator- and property-specific code idioms
and property-specific meta-program fragments to constructthe an-
notations. The algorithm is customized by specifying the code pat-
terns and integrating them with the meta-program fragmentsfor
annotation construction. However, this is difficult since it involves
tedious and error-prone low-level term manipulations.

Here, we describe an approach that automates this customiza-
tion task using generative techniques. It uses a smallannotation
schema compilerthat takes a collection of high-level declarative
annotation schemastailored towards a specific code generator and
safety property, and generates all customized analysis functions and
glue code required for interfacing with the generic algorithm core,
thus effectively creating a customized annotation inference algo-
rithm. The compiler raises the level of abstraction and simplifies
schema development and maintenance. It also takes care of some
more routine aspects of formulating patterns and schemas, in par-
ticular handling of irrelevant program fragments and irrelevant vari-
ance in the program structure, which reduces the size, complexity,
and number of different patterns and annotation schemas required.
The improvements described here make it easier and faster tocus-
tomize the system to a new safety property or a new generator,and
we demonstrate this by customizing it to certify frame safety of
space flight navigation code that was automatically generated from
Simulink models by MathWorks’ Real-Time Workshop.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Program Verification; I.2.2 [Artificial Intelligence]: Auto-
matic Programming; I.2.3 [Artificial Intelligence]: Deduction and
Theorem Proving

General Terms Algorithms, Verification

Keywords automated code generation, program verification, soft-
ware certification, Hoare logic, logical annotations, automated the-
orem proving
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1. Introduction
The verification of program safety and correctness using Hoare-
style techniques requires many logical annotations (principally
loop invariants, but also pre- and post-conditions) that must be
woven into the program. These annotations constitute cross-cutting
concerns, which makes their construction difficult and expensive.
For example, proving even a single array access safe may need
annotations throughout the entire program to ensure that all the
information about the array and the indexing expression that is
required for the proof is available at the access location.

However, in certain cases it is possible to construct the required
annotations automatically, e.g., if the program comes froma limit-
ed domain [16] or if only limited properties are shown [14]. In our
previous work [10], we have developed a genericannotation infer-
ence algorithmthat exploits the idiomatic structure of automatical-
ly generated code to weave in the annotations required to verify a
given safety property. Idioms are recurring code patterns that solve
similar programming tasks using similar constructions. Inautomat-
ically generated code, they result from the way generators usually
derive code, i.e., by combining a finite number of building blocks
(e.g., templates) following a finite number of combination meth-
ods (e.g., template expansion). For example, Figure 1 showsthree
matrix initialization idioms employed by Real-Time Workshop; the
code in Figure 1(c) uses a vector to represent the matrix.

A[0,0 ]:= a0,0;
. . .

A[0,m]:= a0,m;
A[1,0 ]:= a1,0;
. . .

A[n,m]:= an,m;

(a)

for i:= 0 to n do
for j:= 0 to mdo
A[i,j]:= a;

(b)

for i:= 0 to n -1 do
for j:= 0 to mdo
A[i* n +j]:= a;

(c)

Figure 1. Idiomatic matrix initializations in Real-Time Workshop

Our inference algorithm uses generator- and property-specific
patterns to capture these code idioms and property-specificmeta-
program fragments associated with these patterns to construct the
annotations. It first builds an abstracted control-flow graph (CFG),
using the patterns to collapse the code idioms into single nodes.
It then traverses this graph and follows all paths from use-nodes
backwards to all corresponding definitions, adding the annotations
along the way. This algorithm is implemented as part of our AUTO-
CERT system for the safety certification of automatically generated
code. Its core (i.e., CFG construction and transversal) is fully gener-
ic but it must be customized for a given code generator and safety
property by specifying the code patterns and integrating them with
the implementation of the meta-program fragments for annotation



construction. However, while the former part can build on a clean,
declarative pattern language, the latter part has so far involved te-
dious and error-prone low-level term and program manipulations.

Here, we describe an approach that largely automates this cus-
tomization task. It uses a smallannotation schema compilerthat
takes a collection ofannotation schemastailored towards a specif-
ic code generator and safety property, and generates all glue code
required for interfacing with the generic algorithm core, thus effec-
tively generating a customized annotation inference algorithm. The
compiler allows us to represent all knowledge required to handle a
class of specific certification situations declaratively and in one cen-
tral location (i.e., in the annotation schemas), which raises the level
of abstraction and simplifies development and maintenance.It also
takes care of some more routine aspects of formulating patterns and
schemas, in particular handling of irrelevant program fragments
(“junk”) and irrelevant variance in the program structure (e.g., the
order of branches in conditionals), which reduces the size,com-
plexity, and number of different patterns and annotation schemas
that are required. Together with improvements of the underlying
core inference algorithm and the pattern matching machine also de-
scribed here, the schema compiler makes it much easier and faster
to customize the generic annotation inference algorithm toa new
safety property or a new generator. We demonstrate this by cus-
tomizing it to certify frame safety of space flight navigation code
that was automatically generated from Simulink models by Real-
Time Workshop [1].

In this paper, we thus build on but substantially improve over
our previous work on annotation inference for automatically gen-
erated code [10]. Our paper makes four main technical contribu-
tions. The first two are (i) the development of the schema compiler
and (ii) the implicit junk handling by the compiler. In addition, we
have also (iii) modified the underlying core inference algorithm
so that the inference for one variable can “trigger” the inference
for other variables if the safety of the former depends on thelat-
ter. This dependency is also controlled by the schemas. Finally, we
have (iv) extended the pattern language by additional constraint
operators, which make it more expressive and allow more context-
sensitivity in the patterns, thus minimizing reliance on the use of
arbitrary meta-programming functionality in the guards. In particu-
lar, we have integrated a simple data-flow analysis into the matcher,
which allows us to match a pattern against thecontentof a variable
as well. This significantly improves our ability to distinguish struc-
turally equivalent code fragments. Our main empirical contribution
here is a significantly extended evaluation of our general annotation
inference approach. In particular, we have evaluated AUTOCERT
using C code generated by the Real-Time Workshop code gener-
ator. Based on the extensions described here, we have been able
to certify frame and initialization safety for code generated from
Simulink and Embedded Matlab models, as well as several safety
properties for a variety of programs generated by our AUTOBAYES

[13] and AUTOFILTER [27] generators.
The next section gives some general background on the safety

certification of automatically generated code and summarizes the
underlying annotation inference algorithm as far as is required here;
more details can be found in our previous work [10]. Section 3ex-
plains the extended pattern language used here. Section 4 contains
a description of the different aspects of the annotation schema com-
piler, while Section 5 focuses on the practical experience we have
gained so far. The final two sections discuss related work andcon-
clude with an outlook on future work.

2. Technical Background
Here, we briefly summarize our approach to safety certification of
automatically generated code and the generic annotation inference
algorithm. Details can be found in our previous work [8, 9, 10].

2.1 Safety Certification

Program Safety Safety certification demonstrates that a program
does not violate certain conditions during its execution. Asafety
property [8] is an exact semantic characterization of these condi-
tions, while asafety policyis a set of specialized Hoare rules de-
signed to show that a program satisfies the safety property ofinter-
est. Language-specific properties can be applied to all programs in
the underlying programming language. For example, variable ini-
tialization before use (init) ensures that each variable or individual
array element has been explicitly assigned a value before itis used,
while array bounds safety (array), requires each access to an array
element to be within the specified upper and lower bounds of the
array. Our approach can also be used with more specific domain-
specific properties. For example, frame safety (frame) shows that
vehicle navigation software uses the different frames of reference
consistently [18, 23].

Annotation and Verification We split certification into an un-
trusted annotation construction phase (see below for details) and
a simpler but trusted verification phase, where the standardma-
chinery of a verification condition generator (VCG) and automated
theorem prover (ATP) is used to fully automatically prove that the
code satisfies the required properties. As usual in Hoare-style verifi-
cation, a VCG traverses the annotated code and applies the calculus
rules of the safety policy to produce verification conditions (VCs).
These are then simplified, completed by an axiomatization ofthe
relevant background theory and passed to an off-the-shelf ATP. If
all VCs are proven, we can conclude that the program is safe with
respect to the safety policy, and, given the policy is sound,also
the safety property. Note that the annotations serve as “hints” or
lemmas for the ATP, and must be established in their own right.
Consequently, they remain untrusted—a wrong annotation cannot
compromise the assurance provided by the system.

2.2 Idioms

The idioms used by a code generator are essential to our approach
because they (rather than the generator’s building blocks or combi-
nation methods) determine the interface between the generator and
the inference algorithm. The idioms and corresponding patterns are
specific to the given safety property, but the inference algorithm re-
mains the same for each property. This allows us to apply our tech-
nique to black-box generators as well, as the example of Real-Time
Workshop shows. Moreover, it also allows us to handle optimiza-
tions: as long as the resulting code remains idiomatic, neither the
specific optimizations nor their order matter. We can thus customize
a verifier for a given generator and safety property, by identifying
the relevant idioms and formalizing them as patterns.

The idioms represent the key knowledge that drives the anno-
tation inference. However, we need to distinguish different classes
of idioms, in particular, definitions, uses, and barriers.Definitions
establish the safety property of interest for a given variable, while
usesrefer to locations where the property is required.Barriers rep-
resent any statements that appear between definitions and uses (in
the control flow graph) that require annotations, i.e., principally
loops. In the case of initialization and frame safety, the definitions
are the different initialization blocks, while the uses arestatements
which read a variable (i.e., contain anrvar). In the case of array
bounds safety, the definitions correspond to fragments which set
the values of array indices, while the uses are statements which ac-
cess an array variable. In all cases, barriers are loops.

2.3 Inference Algorithm Structure

The inference algorithm itself is then based on two related key ob-
servations. First, it is sufficient to annotate only in reverse along
all CFG-paths between uses (where the property is required)and



definitions (where it is established). Second, along each path it
is sufficient to annotate only with the definition’s post-condition,
or more precisely, the definition’s post-condition under the weak-
est pre-condition transformation that is implemented in the VCG,
which corresponds to the safety condition which must hold atthat
point in the code.

The inference algorithm builds and traverses the CFG and re-
turns the overall result by side-effects on the underlying program
P . It reduces the inference efforts by limiting the analysis to cer-
tain program hot spots which are determined by the so-called“hot
variables” and “hot uses” described in our previous work [10]. In-
tuitively, a variable use (and thus the variable) is hot, if there is a
barrier between the use location and any of the variable’s defini-
tions. Note that the hot variables are computed before the graph
construction (and thus before the actual annotation phase), in or-
der to minimize the work in the subsequent stages. For each hot
variable the algorithm then computes the CFG and iterates over all
paths in the CFG that start with a hot use, before it finally constructs
the annotations for the paths.

Abstracted Control Flow Graphs The algorithm follows the
control flow paths from variable use nodes backwards to all cor-
responding definitions and annotates the barrier statements along
these paths as required (see below for details). The CFGs areab-
stracted by collapsing entire code idioms matching specificpat-
terns into individual nodes. Since the patterns can be parametrized
over the hot variables, separate abstracted CFGs are constructed for
each given hot variable. The construction is based on a straightfor-
ward syntax-directed algorithm as for example described byHar-
rold and Rothermel [15].1 The only variation is that the algorithm
first matches the program against the different patterns, and in the
case of a match constructs a single node of the class corresponding
to the successful pattern, rather than using the standard construction
and recursively descending into the statements subterms.

In addition tobasic-nodes representing the different statement
types of the programming language, the abstracted CFG can thus
contain nodes of the different pattern classes. The algorithm is
based on the notions of theuse- anddefinition-nodes and usesbar-
rier-, barrier-block- and block-nodes as optimizations. The latter
three represent code chunks that the algorithm regards as opaque
(to different degrees) because they contain no definition for the
given variable. They can therefore be treated as atomic nodes for
the purpose of path search, which drastically reduces the number
of paths that need be explored.

Annotation of Paths For each hot use of a hot variable, the path
computation returns a list of paths toputativedefinitions. They have
been identified by successful matches, but without the safety proof
we cannot tell which, if any, of the definitions are relevant.In fact, it
may be that several separate definitions are needed to fully define a
variable for a single use. Consequently, all paths must be annotated.

Paths are annotated in two stages. First, unless it has already
been done during a previous path, the definition at the end of the
path is annotated. Second, the definition’s post-condition(which
has to hold at the use location and along the path as well) is taken as
the initial annotation and propagated back along the path from the
use to the definition. Since this must take computations and control
flow into account, the current annotation is updated as the weakest
pre-condition of the previous annotation. Both the computation of
pre-conditions and the insertion of annotations are done node by
node rather than statement by statement.

1 Since the generators only produce well-structured programs, a syntax-
directed graph construction is sufficient. However, we could, if necessary,
replace the graph construction algorithm by a more general version that can
handle ill-structured programs with arbitrary jumps.

P ::= x x ∈ X

| f(P1, . . . , Pn) f ∈ Σ

| | P? | P * | P+ | P1 ...P2

| P1 ; P2 | P1||P2 | P1 <+P2

| P1 // P2 | P1 \\ P2 (lookahead)
| P1 ⊃ P2 | P1 ⊃/ P2 | P1 ⊂/ P2 (subterm matches)
| P ← U (weave)
| P @ x (access)
| P ::C (constraint)

U ::= &(A {,A}) | &&(A {,A})

| 〈prim-op〉

A ::= inv F | pre F | postF F ∈ F

C ::= P1 ~= P2 (data-flow lookback)
| 〈prim-op〉

Figure 2. Grammar of extended pattern language

Annotation of Nodes The path traversal described above calls the
actual annotation routines (whether implemented manuallyor gen-
erated from the annotation schemas) when it needs to annotate a
node. Three classes of nodes need to be annotated: definitions, bar-
riers (which are typically loops), and basic nodes which represent
loops that have not been matched by any other pattern. However,
the most important (and interesting) class is the definitions because
their annotations (more precisely, their final post-conditions) are
used as initial values for annotation along the paths.

For example, we can define a separate annotation schema for
each of the three different initialization blocks shown in Figure 1.
Each schema inserts a final (outer) post-condition establishing that
the matrixx is initialized, e.g., in the first two cases∀ 0 ≤ i ≤
N, 0≤ j≤M · Ainit[i, j] = INIT.

However, the annotations also need to maintain the “internal”
flow of information within a definition. Hence, the schemas dealing
with the situations shown in Figure 1(b) and 1(c) also need toinsert
an inner post-condition, as well as inner and outer loop invariants.

Note that even after a pattern has been successfully matched,
the annotation schema itself might still fail. For example,the pat-
tern in the schema handling the idiom in Figure 1(a) simply match-
es against a sequence of assignments, but the schema requires that
the indices of the first and last assignments are the lower andupper
bound of the array, respectively. Of course, even if the schema suc-
ceeds, the generated VCs might fail since annotation construction is
untrusted. In other words, matching is approximate, but ultimately
checked by the prover.

3. Extended Pattern Language
The annotation inference algorithm uses patterns to capture the
idiomatic code structures and pattern matching to find the corre-
sponding code fragments and build the CFG. The pattern language
is essentially a tree-based regular expression language similar to
XML-based languages like XPath [3]; Figure 2 shows its grammar.
Compared to our previous work [10], we added more contextual
patterns (the lookahead operators// and \\ and the outside-
operator⊂/), operators to support interactions with the meta-program
fragments constructing the actual annotations, and constraints (::),
in particular the data-flow lookback operator~= .

Core Patterns The language supports matching of tree literals
f(P1, . . . Pn) over a given signatureΣ, wildcards () and the usu-



al regular operators for optional (?), list (* ) and non-empty list (+)
patterns, as well as alternation (|| ) and concatenation (; ) op-
erators. The ellipsis operator... allows the concise formulation
of enumerations.P1 ... P2 is compiled intoP1;P*;P2, where
P = lcs(P1, P2) is the least common subsumer (or anti-unifier) of
P1 andP2. This is computed by replacing any two different sub-
terms at corresponding positions in the two terms by a fresh vari-
able.<+ is a committed choice operator, which is similar to alterna-
tion, but tries the alternatives in a left-to-right order, and commits
to the first match, i.e., does not backtrack into the other alternatives.

Context Dependencies Unlike a “pure” regular expression lan-
guage, our pattern language allows us, to some limited degree, to
express context dependencies. This can be achieved by two dif-
ferent mechanisms, contextual patterns and pattern meta-variables.
Contextual patterns generalize the idea of lookahead that is well-
known from regular expression matching. Acontextual pattern
P1 opP2 consists of a base patternP1 that must be matched against
the input, and will eventually be returned as match result, and a con-
text patternP2 that can rule out potential base matches, depending
on the given context operatorop. Possible operators are lookahead
(//) and its complement (i.e.,P1 \\ P2 matches ifP1 is not fol-
lowed byP2), which check the right siblings of the term matched
against the base pattern (i.e., work horizontally), and various forms
of subterm matching, which check its descendants and ancestors
(i.e., work vertically). Hence,P1 ⊃P2 matches all terms that match
P1 and have at least one subterm that matchesP2; similarly,P1⊃/P2

matches all terms that matchP1 and have no subterm that matches
P2.2 For example, the patternA[* ⊃/ I; I; * ⊃/ I ] := ⊃/ A uses sub-
term matching to rule out array updates in which the index variable
I appears more than once in the index list, or in which the arrayA
appears on the right-hand side of the assignment. In contrast to the
inward-looking operators⊃ and⊃/ , the ⊂/ -operator looks outward:
P1 ⊂/ P2 checks for instances ofP1 which are not within any en-
closing occurrence ofP2. This has proved very useful to rule out
accidental matches. Uninstantiatedpattern meta-variablesmatch
any term but, unlike a wildcard, they then become instantiated with
the matched term and subsequently match only against further in-
stances of the first match. For example, the pattern ([ ] := )+
matches the entire statement listA[1]:=1;A[2]:=2;B[1]:=1
while the pattern (x[ ] := )+ matches only the two assignments to
A but not the final assignment toB, due to the instantiation ofx
with A.

Interaction Operators Another extension of the pattern language
describes interactions with the meta-program fragments construct-
ing the actual annotations. The two operators← and @ are used to
compile the guards and actions of the corresponding schema.The
weave-operationP ← U executes an update actionU on the pro-
gram fragment matched againstP when the annotation schema is
applied, and thus weaves in the annotation.U can be an arbitrary
meta-program operationprim-op of type TΣ → TΣ, but typical-
ly it just adds a list of annotations to the target fragment, and we
provide two built-in operations for this case.&(A) simply adds
the annotationsA to the target fragment, while&&(A) recursively
addsA to all barriers inside the target fragment. This is mostly used
for the junk handling described in Section 4.3. In both cases, anno-
tations are simply formulasF ∈ F , labeled with their purpose as
invariant, pre- or post-condition. The access-operatorP @ x binds
the meta-variablex to the term matched againstP , so that it can be
referred to in the guards and actions. This is similar to the use of
pattern meta-variables, but allowsP to be further instantiated.

Constraints Constraints are similar to contextual patterns in the
sense that the base patternP will be returned as result only if

2 In our previous work [10], these were denoted byP2 ∈ P1 andP2 ∈/P1,
respectively.

the constraintC is satisfied.C is either a data-flow lookback (see
below), or an arbitrary meta-program operation. These can for
example be used to check structural properties of the match that
cannot be expressed in the pattern language, e.g., identical lengths
of two different lists.

Data-flow Lookback Since pattern matching works on the syn-
tactic structure of the program, all relevant semantic differences
must be reflected syntactically. However, in practice, thisis often
not the case and semantically different concepts are represented by
syntactically similar code. For example, in vehicle navigation soft-
ware, frames of reference are used to represent different coordinate
systems within which the position and orientation of objects are
measured.3 Transformations between different frames can be rep-
resented by a direction cosine matrix (DCM) [23]; Figure 3 shows
the different structure of two example DCMs transforming from the
NED frame into two different target frames.

(

-cosλ sinφ -sinλ -cosλ cosφ
-sinλ sinφ cosλ -sinλ cosφ

cosφ 0 -sinφ

) (

cos(H−A) sin(H−A) 0
-sin(H−A) cos(H−A) 0

0 0 1

)

Figure 3. DCM matrices: (a)NED-to-ECEF(b) NED-to-Nav

For the certificationframe safety (i.e., all measurements are
transformed into the right frames before they are processed) we
need to be able to distinguish between the two different DCMs,
but the code generated by Real-Time Workshop uses temporary
variables to store the elements, and the matrix (represented as a
vector) is updated using these (see Figure 4(a)). Note that additional
temporaries are used to factor out common subexpressions. In order
to identify the sequence of array updates as theDCM-NED-to-
ECEF idiom, and to distinguish it from the structurally equivalent
DCM-NED-to-Navidiom, we thus need to match thecontentof the
variablesv0 to v8 (and thus the content of the meta-variablesx0

to x8) against the respective patterns.

c0:=-1
· · ·

w0:=cos(in5)
w1:=sin(in4)
w2:=sin(in5)
· · ·

v0:=c0*w0*w1;
v1:=c0*w1*w2;
· · ·

v8:=c0*w1;
· · ·

a[0]:=v0;
a[1]:=v1;
· · ·

a[8]:=v8;

(a)

(A[0] := x0) :: (x0 ~= − cos(L) ∗ sin(P ));
(A[1] := x1) :: (x1 ~= − sin(L) ∗ sin(P ));
· · ·

(A[8] := x8) :: (x8 ~= − sin(P ))

(b)

Figure 4. DCM-NED-to-ECEFcode fragment (a) and pattern (b)

Rather than using arbitrary meta-programs to analyze the pro-
gram structure, we introduce a specific constraint operatorthat trig-
gers a simple, approximate data-flow analysis to infer possible sym-
bolic values of program variables that are then checked against
the constraint pattern. Figure 4(b) shows the actual pattern used
to capture the idiom. The schema itself is shown in Section 5.2.

3 Here we consider the vehicle-centered systems North-East-Down (NED)
and wander azimuth (Nav), and the earth-centered systems Earth-Centered
Inertial (ECI) and Earth-Centered Earth Fixed (ECEF).



The structural core of the pattern is simply the sequence of array
updates, but each right-hand side is constrained by an appropri-
ate lookback. When an update such asa[0]:=v0 is matched, the
meta-variablesA andx0 are instantiated witha andv0, respective-
ly, and then the data-flow lookback constraint on the instantiation
of x0 is checked. The data-flow analysis thus looks back through
the program to find possible values forv0. The preceding assign-
ment yieldsc0*w0*w1 for which a match is attempted against the
constraining pattern−cos(L) ∗ sin(P ). This attempt fails, which
triggers further lookbacks to values of the variables occurring in the
value found for the original variablev0, i.e.,c0, w0, andw1. Us-
ing the theory matching described below, the lookback eventually
succeeds, with the meta-variablesL andP instantiated within5
andin4, respectively. Note that a “plain” lookback (i.e., a reverse
lookahead) would remain insufficient in such situations, since the
required value ofx0 is only constructed in several steps and several
different locations.

The dataflow lookback is only an approximation, since it ig-
nores control flow predicates and CFG back edges. However, this
approximation remains safe, as all matches are checked by the VCs
and thus ultimately by the ATP.

Match procedure The match procedure traverses terms first top-
down and then left-to-right over the direct subterms, returning as
result triples where the first two arguments are the root position
and length of the match of the top-level pattern, and the third is
a substitution with bindings for the pattern meta-variables. The
meta-variables are instantiated eagerly (i.e., as close tothe root as
possible) but instantiations are undone if the enclosing pattern fails
later on. List patterns follow the usual “longest match” strategy
used in traditional regular expression matching. Lookahead and
subterm matching are implemented in a straightforward way,but
the performance of the pattern matcher has been sufficient sofar.
Constraints are checked whenever a match for the base pattern has
been found. However, the dataflow lookback requires interaction
with the CFG construction and the term traversal, as traversed terms
need to be pushed on a stack for later inspection.

The match procedure also supports a limited form of matching
modulo theory: users can specify how tree literal patterns can be
mapped onto terms. We use this to handle some irrelevant syntactic
variance in the programs, for example, to handle commutative
operators such as addition and multiplication by simply checking
all possible permutations of the operands, or to identify block
patterns of the form{*;P;*} with single statements matching
P . This feature has proved very useful, but it has to be used with
care, since the indiscriminate use of such mappings can increase
the search space for matching substantially and can also lead to
unintended matches and hence a loss of control; in the worst case,
the theory implementation may not terminate, which will of course
cause the non-termination of the entire matching procedure.

4. Annotation Schema Representation and
Compilation

An annotation schemais a declarative representation of all knowl-
edge required to handle a class of specific certification situations.
A schema includes a code pattern that describes both the structure
of the object program fragments to which the schema is applicable
and where the annotations will be added, and two lists of run-time
guards and actions that will be first executed when the pattern is
matched against the object program, and then used to computethe
actual annotations that are added. In practice, however, guards are
rarely required, and none of the schemas shown here uses them.

The AUTOCERT annotation schema compiler takes a collection
of annotation schemas tailored towards a specific code generator
and safety property, and compiles it down into a customized an-

schema(for assign
, SP
, def(A)
, (for (I := to )@ Indexdo

((A[*⊃/ I; I; *⊃/ I ])@ AI := ⊃/ A) ← &(postSC)
) ← &(inv Inv, postPost)

, default
, []
, [safe(SP, AI, SC),

ind schema(step1, SC, [Index], [Inv,Post])]
) :- SP=init ; SP=range( ).

Figure 5. Annotation schemafor assign

notation inference algorithm. Since we are reusing AUTOCERT’s
core annotation inference algorithm outlined above and described
in more detail in our previous work [10], which is implemented in
Prolog, the output of the compiler is simply a set of Prolog clauses.

4.1 Schema Representation

An annotation schema bundles together all knowledge that isre-
quired by the annotation inference algorithm to handle a class of
specific certification situations. In addition to the pattern and the
run-time guards and actions this also includes the safety policy or
policies under which the schema is applicable and the node class
that will be attached to the matched object program fragments.
Since the schema compiler is implemented in Prolog, we simply
represent schemas by Prolog facts or clauses. This allows usto
use arbitrary Prolog code as compile-time guards and actions to
the schemas and thus to further simplify their formalization. In
the examplefor assign shown in Figure 5,4 which comes from
Simulink, we can thus use the same schema (with appropriately
parametrized actions) for two of the different safety properties init
andrange(a vector satisfiesrange(dim(A, N)) if all its entries are
within the bounds of theN th dimension of arrayA), although we
concentrate oninit here. The schema clauses also contain some ad-
ditional information that is used by the schema compiler, namely
the schema name (for reference purposes), and the name of a pat-
tern pre-processing predicate (heredefault), which can be used
to simplify the description of the patterns and the advice (see Sec-
tion 4.3 for details).

The for assign schema is designed to annotate loops that
initialize arrays element by element. For example, in orderto facil-
itate a proof that

for i := 1 to N do
a[i] := b[i];

actually initializes the arraya, the schema needs to construct an
appropriate loop invariant and post-condition, resultingin the an-
notated loop

for i := 1 to N inv ∀ 1 ≤ j < i · ainit[j] = INIT do
a[i] := b[i];
postainit[i] = INIT

post∀ 1 ≤ j ≤ N · ainit[j] = INIT

The first step in designing this schema is to specify the core
pattern that will be used to identify instances of the general loop
structure in the program. Here we are looking for singlefor -loops
with arbitrary lower and upper bounds, where the loop body con-
sists of an update of an arbitrary arrayA, in which the loop’s index
variableI is used as index. We allow additional indices left and

4 Here, and in the rest of the paper, we type-set the patterns using concrete
syntax to improve the legibility of the schemas. Our implementation uses
standard Prolog terms.



right of I , provided they contain no further occurrences ofI (thus
restricting the schema to arrays effectively used as vectors), and
require that the right-hand side of the assignment containsno fur-
ther occurrences of the arrayA that is being initialized. This can be
expressed concisely in our pattern language:

for I := to do
A[*⊃/ I; I; *⊃/ I ] := ⊃/ A

The second step is to add←-operations to splice the construct-
ed annotations into the appropriate locations. As outlinedabove,
we need an invariantInv and post-conditionPoston the loop itself.
However, we also need to specify the post-condition on the indi-
vidual array-update, which will be used to prove the loop’s post-
condition. This yields

(for I := to do
(A[*⊃/ I; I; *⊃/ I ] := ⊃/ A) ← &(postPostAI)

) ← &(inv Inv, post Post)

Since this schema requires no guards, the final step is to add the
actions that actually construct the annotations. Here, theactions
consist of calls to the safety predicatesafe and the annotation
construction predicateind schema (see Section 4.2) to construct
the post-condition for a single array-update and the loop invariant
and post-condition, respectively. The predicates requireaccess to
specific parts of the actual program fragment matched against the
pattern, e.g., the complete left-hand side of the array-update. Since
this is not bound by a pattern meta-variable—note thatA only
contains the name of the array, not the entire access—the pattern
used in the schema contains additional variables likeAI that are
bound to the relevant subterms and then used to pass them intothe
predicates (see Figure 5). In the above example, we thus get the
annotationsSC≡ ainit[i] = INIT, Inv ≡ ∀ 1≤j <i · ainit[j] = INIT,
andPost≡ ∀ 1≤j≤N · ainit[j] = INIT, as expected.

4.2 Induction Schemas

Schemas can make use of arbitrary specialized meta-programming
in order to construct annotations but, in general, most annotations
encapsulate general induction principles, so we use a generic pred-
icateind schema to construct them. This takes the form of in-
duction to use, the base formula (usually the safety predicate on the
hot variable), and the indices (i.e., bound variables and bounds) to
induct over, and returns the list of annotations.

Several types of induction are currently supported. The schemas
discussed here use single- (step1) and doubly-nested induction
(step2), which constructs the necessary inner and outer invariants
and post-conditions. There is also a schema that handles diagonal
matrix traversalsdiag.

We keep the induction schemas separate from the annotation
schemas themselves for two main reasons. First, the induction
schemas encapsulate general induction principles that work for
multiple annotation schemas so that very few of them are needed.
Second, an annotation schema does more than an induction schema.
The latter just constructs some annotations, but the formersays
where to put those annotations, how to pre-process the pattern,
under what conditions (i.e., guards) they should apply, andwhether
there are any dependent variables (see Section 4.4).

4.3 Pattern Pre-processing

Often, even auto-generated code does not exactly fit the pat-
tern specified in a schema, but contains “junk”, i.e., additional
statements that are irrelevant to the current hot variable.Such
junk can be part of the original program structure, or it can be
introduced by optimizations (e.g., loop-invariant computations
that are hoisted out of an inner loop). Consider for example the
for for assign lin schema shown in Figure 6, which an-

schema(for for assign lin
, init
, def(A)
, (for (I := 0 to N)@ IndexI do

(for (J := 0 to )@ IndexJdo
(((A[I*N’+J ])@ AIJ :: N+1≡N’) := ⊃/ A) ← &(postSC)

) ← &(inv InvJ, post PostJ)
) ← &(inv InvI, postPostI)

, default
, []
, [safe(init, AIJ, SC),

ind schema(step2, SC, [IndexI, IndexJ],
[InvI, PostI, InvJ, PostJ])]

).

Figure 6. Annotation schemafor for assign lin

notates two nestedfor -loops initializing a single matrixA that is
represented as a vector; here, the constraintN + 1 ≡ N ′ sym-
bolically evaluates whether the multiplierN ′ has the right value.
This schema should also apply in situations where the outer loop
contains additional statements before or after the inner loop, and
similarly for the inner loop, e.g., if, as the result of a loopfusion,
two matrices are initialized at the same time.

Extending the schema to cover these cases requires two steps.
First, the junk statements need to be “matched away”, which can be
achieved by adding list wildcards to the arguments of the statement
patterns. Some care must be taken to ensure that these do not
conflict with the proper pattern; we thus add additional constraints
to the wildcards (see Figure 7). However, the junk fragmentscan
also contain statements that match barrier patterns and thus require
annotations as well. These fragments will not be annotated during
the CFG traversal because they have become part of the definitions.
Consequently, the junk fragments must in the second stage be
annotated by the definition schema as well.

The entire process can be automated because the annotationsre-
quired for the different junk positions can be derived systematically
from the annotations given in the original pattern using thenotion
of current annotation:

• On entry to a loop pattern, the current annotation is set to the
invariant attached to the loop (or to true, if no invariant isgiven),
and its old value is saved.

• On exit from a loop pattern, the current annotation is restored
to the saved value, and the post-condition attached to the loop
(if any) is added to it.

• For any other pattern, the attached post-condition (if any)is
added to it.

The current annotation is then used to start annotating any barriers
that are contained in the junk fragments. The annotation schema
compiler simply keeps the current annotation while it pre-processes
the patterns, and whenever it inserts a list wildcard to match junk
fragments, it also splices in a recursive update (i.e., using the&&-
operator) with the current annotation. Figure 7 shows the pattern
that results from applying this default pre-processing to the pattern
specified in Figure 6. Of course, the default can be overridden by
specifying the full pattern.

The definition of current annotations, and their use in the junk
fragments, reflects the role loop invariants play in the Hoare-
calculus. Since the loop invariant contains all information required
to prove the body, all irrelevant loops (i.e., barriers) in the body
need to maintain it, and all relevant loops (i.e., nested loops) need
to contain a complete invariant as well as a sufficient post-condition
by themselves.



(for (I := 0 to N)@ IndexIdo {
(* ⊃/ for J := 0 to do {

(* ⊃/ (((A[I*N’+J ])@ AIJ :: N+1≡N’) := ⊃/ A)) ;
(((A[I*N’+J ])@ AIJ :: N+1≡N’) := ⊃/ A)
*

}) ← &&(inv InvI);
(for (J := 0 to )@ IndexJdo {

(* ⊃/ (((A[I*N’+J ])@ AIJ :: N+1≡N’) := ⊃/ A)
) ← &&(inv InvI ∧ InvJ);
(((A[I*N’+J ])@ AIJ :: N+1≡N’) := ⊃/ A) ← &(postSC)
* ← &&(inv InvI ∧ InvJ∧SC)

}) ← &(inv InvJ, post PostJ)
* ← &&(inv InvI ∧PostJ)

}) ← &(inv InvI, postPostI)

Figure 7. Pre-processed version of the pattern used in the
for for assign lin schema

schema(mtrans int
, frame
, def(A)
, (C := 0;

((for (I := 0 to N)@ IndexI do
(for (J := 0 to M)@ IndexJdo {

(((A[I+N’*J ])@ AIJ :: N+1≡N’) := T[C]);
C++

}) ← &(inv C=J+N’*I ∧ FPre∧ InvJ,
postC=M+1+N’*I ∧ FPre∧PostJ)

) ← &(inv C=N’*I ∧ FPre∧ InvI, post FPre∧ PostI)
) ← &(postFPre∧ A=trans(T))

) ← &(pre FPre, post FPost)
, default
, [T]
, []
, [FPre = has_frame(T, dcm(F2, F1)),

FPost = has_frame(A, dcm(F1, F2)),
ind schema(step2, AIJ=T[J+N’*I],

[IndexI, IndexJ],
[InvI, PostI, InvJ, PostJ])]

).

Figure 8. Annotation schemamtrans int

4.4 Dependent Hot Variables

The inference first passes over the program to determine the hot
variables before it proceeds along every path from every hotuse
until either a definition or the beginning of the program is reached.
Sometimes, however, a definition will trigger further hot variables
that could not be (efficiently) detected on the first pass. This hap-
pens, intuitively, when one variable is computed from another. For
example, in the schemamtrans int shown in Figure 8, the vari-
able A is computed as the transpose ofT , so that its frame de-
pends onT ’s frame.5 Themtrans int schema uses a syntactic
variant, where the additional (sixth) argument[T] indicates that
T is a dependent hot variable forA. Inference will thus proceed
past this definition forA and restart, looking for a definition for
the new hot variableT . Specifying the dependent hot variables is
straightforward using the schemas, which shows the power ofthe

5 Note that the schema has three nested post-conditions: the first (i.e., on the
outer loop) states the element-wise definition of the transpose; the second
“lifts” this to an explicit transpose operator; and the third uses this to derive
the appropriate frame information.

approach. In the previous system version using manual annotation
clauses, computing the dependent hot variables could require the
implementation of complex term decomposition.

4.5 Schema Compiler

Since we are building on AUTOCERT’s existing, large infrastruc-
ture code base, the actual annotation schema compiler is surpris-
ingly small—approximately 1000 lines of Prolog code. It provides
two top-level functions, corresponding to the phases (i.e., CFG con-
struction and traversal) of our analysis. Both functions take as in-
put a list of annotation schemas, but not necessarily the same. This
allows us for example to use a schema with a more refined pat-
tern to construct the CFG, but to re-use a more general schemato
actually construct the annotations. The first function simply pre-
processes the patterns and uses the pre-processed patternsfor the
CFG-construction. The second function is the compiler proper. For
each schema, it produces a correspondingannotate clause that
is called from the existing inference algorithm when it is trying to
annotate a CFG-node (Section 2.3). Each clause consists of six gen-
eral phases: (i) check that the program fragment corresponding to
the CFG-node matches the schema’s pre-processed pattern (this is
necessary because the two phases can use different schemas); (ii)
select the program fragment and bind the pattern’s meta-variables,
including those introduced by pre-processing; (iii) evaluate the
schema’s guards, to ensure applicability; (iv) execute the schema’s
actions, to construct the annotations; (v) execute the update actions
specified in the pattern; and finally, (vi) processes the dependent
hot variables, if any are specified. In addition, the compiler al-
so generates several auxiliary functions required by the inference
algorithm, e.g., extracting the overall post-condition attached to a
pattern. This is the same structure as the manually implemented an-
notation clauses, which is hardly surprising, since both are called
in the same context. However, the schema compiler eliminates the
tedious term-operations in steps (ii) and (v) above, which are a
source of errors that are difficult to trace and clutter up themanual-
ly implemented annotation clauses. Consequently, the schemas are
significantly more compact and on average amount to only about
35% of the manual versions.

Since we took care to generate code that is compatible with
the existing code base, only minor modifications were required to
the rest of AUTOCERT in order to interface it with the schema
compiler. The other extensions described here, in particular the
data-flow lookback and the dependent hot variables, required more
substantial changes to the system. However, these extensions were
designed to handle a wider range of certification problems and are
orthogonal to the schema compiler itself.

The annotation schemas could also be interpreted at inference
time, rather than being compiled upfront. However, the use of Pro-
log as AUTOCERT’s implementation language means that we could
simply compile the schemas on-the-fly, and thus achieve the same
effect as with an interpreter. Moreover, an interpretationwould re-
quire more substantial modifications to the existing AUTOCERT
implementation, and minimizing such modifications was the main
motivation for choosing the compilation approach.

5. Evaluation
We have evaluated the schema compiler and its interaction with
AUTOCERT’s core inference engine on code generated by two in-
house code generators, AUTOFILTER and AUTOBAYES, as well
as a COTS generator, Real-Time Workshop, which generates code
with distinct characteristics from several modeling languages. Here
we look at code generated from Simulink and Embedded Matlab
models.



5.1 AUTOBAYES and AUTOFILTER

We originally developed the annotation schema compiler foruse
with our AUTOBAYES and AUTOFILTER generators. Both gener-
ate numerical code that uses many vector and matrix operations,
and has complex control flow with nested loops, but they work in
different domains: AUTOBAYES generates statistical data analysis
code, while AUTOFILTER is tailored towards state estimation prob-
lems. Tables 1 and 2 summarize the evaluation of both systems.

For AUTOBAYES, we use three different program versions
segm{1,2,3} generated from the same model, by using different
initialization methods for an iterative clustering algorithm. These
programs have been applied to an image segmentation problem
for planetary nebula images taken by the Hubble Space Telescope.
They have been used in our previous work on annotation infer-
ence [10], which allows us to compare the results of the anno-
tation schema compiler with manually implemented annotation
code. For this application, certifying different safety properties is
not required; however, it increases our confidence in the overall
correctness of the AUTOBAYES system.

For AUTOFILTER, we used a series of idealized models of the
orbital dynamics of the Crew Exploration Vehicle using a simple
aiding sensor for position and velocity.6 orb assumes that the
earth is a perfect ellipse and is formulated as a two-body problem
using Kepler’s Laws [23]. AUTOFILTER generates Kalman filter
based state estimation code from this, which estimates the state
of the CEV from the sensor readings.orbj2 extendsorb by
adding so-called J2 perturbations. These are additional terms in the
differential equations of the process model of the vehicle dynamics
which account for irregularities in the earth’s gravitational field.
orbj2bier represents the same model but where the generator
is configured to select a different algorithm, namely the Bierman
measurement update. This uses LU matrix decomposition in order
to represent matrices in a more numerically stable form. Generating
code for these models required extension to AUTOFILTER, which
rendered obsolete the manually implemented annotation clauses
used in our previous work.

Initialization Safety Table 1 shows the results of applying the
inference engine for theinit safety property to the code generated
from the above models by AUTOFILTER and AUTOBAYES.

The first two columns give the size of the generated programs
and the size of the inferred annotations, both in non-blank lines
of code. Note that the annotations are as large as, and in some
cases substantially larger than, the program itself. The third column
gives the number of schemas used to generate the annotationsfor
each program. This is, in contrast, quite small—in each casehere,
only either 2 or 3 schemas are required to handle the programs.
This is partly because the junk mechanism allows a single high-
level pattern to capture much of the variability present in the code,
and confirms our intuition that the schema language is a highly
concise means of encapsulating the knowledge required to prove
safety properties. In total, we needed only 8 and 6 schemas for
each of AUTOBAYES and AUTOFILTER, respectively, to formalize
initialization safety; 5 of these are shared between both systems.
Translating the existing manually implemented annotationclauses
into new schemas was straightforward. Adapting the system to the
new orb- andorbj2-code required only a few iterations to get
the annotations right and the VCs proven. In our experience,this
adaptation process has now become much simpler and faster than
it had been in the old approach using the manually implemented
annotation clauses.

6 These models were developed by the first author together withJohann
Schumann, and are based on a model of the orbital coasting mode of the
Space Shuttle developed by the second author.

Spec. |P | |A | N VC Tinf TVCG TATP

segm1 182 1521 3 105 4.3 4.8 88
segm2 178 1495 2 107 4.6 5.0 86
segm3 172 1512 2 107 4.5 4.8 90
orb 326 398 2 22 2.2 3.3 24
orbj2 378 424 2 22 2.7 3.8 25
orbj2bier 447 2106 3 53 5.2 5.3 71

Table 1. Annotation inference: results forinit-property

Spec. |P | |A | N VC Tinf TVCG TATP

segm1 182 125 0 0 0.1 0.3 -
segm2 178 129 1 4 0.3 0.4 3.1
segm3 172 148 1 4 0.3 0.4 3.2
orb 326 78 0 0 0.1 1.6 -
orbj2 378 96 0 0 0.2 1.8 -
orbj2bier 447 208 0 7 0.2 2.3 4.4

Table 2. Annotation inference: results forarray-property

The next column gives the number of verification conditions
generated from the annotated program. The additional algorithmic
complexity fororbj2bier is reflected in a substantially larger num-
ber of VCs, although it requires only one more pattern. The subse-
quent columns list the times taken to infer the annotations,to ap-
ply the VCG (which includes simplification) and to prove the VCs.
Inference time is clearly negligible in comparison to prover time,
which dominates the overall run-time.7 Since we trust the Hoare-
rules of the safety policy, the axioms of the domain theory, and the
theorem provers, the fact that all VCs are proven indirectlyvali-
dates our schemas.

Array Safety Table 2 shows the results of applying the inference
engine for thearray safety property to the same models and gener-
ator configurations. This property is significantly simplerthaninit,
and this is reflected in both the number of definition patterns, and
the number of VCs. In fact, for most of the cases here, there are no
definitions required. This is a consequence of no uses being desig-
nated hot [10]. There are, however, still some annotations generated
(simple loop bounds which do not require patterns). In several cas-
es, the VCs are simplified away entirely before the prover phase.

The only cases which require definition patterns aresegm2

andsegm3, which make use of array indirection, and so require
annotations to give bounds on the values of matrix elements.Each
example requires a single schema, which was again straightforward
to formulate.

5.2 Real-Time Workshop: Simulink

We used AUTOCERT to generate a customized verifier for show-
ing frame safety of C code generated from Simulink models by
Real-Time Workshop. We then used this verifier on a navigation
subsystem currently under commercial development for NASA,
which transforms the coordinate frames of various signals.The
signals represent state information using quaternions andthe soft-
ware converts the quaternions to and from direction cosine matrices
(DCMs), so that matrix algebra can be used to perform the transfor-
mation. Several DCMs (NED-to-Nav, NED-to-ECEF, and ECI-to-
ECEF are constructed directly using standard trigonometric formu-

7 All times here are wall-clock times in seconds, measured on an otherwise
idle 2.2GHz standard PC with 3GB RAM running Red Hat Enterprise Linux
WS release 4. We used the SSCPA system [22] to run the E (version 0.999)
[21] and SPASS (version 3.0c) [25] theorem provers in parallel.



schema(dcm ned ecef
, frame
, def(A)
, ((A[0] := x0) :: (x0 ~= -cos(L) ∗ sin(P ));

(A[1] := x1) :: (x1 ~= -sin(L) ∗ sin(P ));
(A[2] := x2) :: (x2 ~= cos(P ));
(A[3] := x3) :: (x3 ~= -sin(L));
(A[4] := x4) :: (x4 ~= cos(L));
(A[5] := x5) :: (x5 ~= 0);
(A[6] := x6) :: (x6 ~= -cos(L) ∗ cos(P ));
(A[7] := x7) :: (x7 ~= -sin(L) ∗ cos(P ));
(A[8] := x8) :: (x8 ~= -sin(P ))
) ← &(posthas frame(A, dcm(ned, ecef)),

pre ∃ λ, φ · hasunit(λ, geolong) ∧ hasunit(φ, geolat)
∧ x0= -cos λ sin φ ∧ x1= -sin λ sin φ
∧ x2=cosφ ∧ x3= -sin λ ∧ x4=cos λ ∧ x5=0
∧ x6= -cos λ cos φ∧x7= -sin λ cos φ∧x8= -sin φ)

, none
, []
, []
).

Figure 9. Annotation schemadcm ned ecef

las and taking various physical quantities either as input from the
signals or as constants, namely, geodetic latitude, longitude, time,
true heading, platform azimuth, and the Earth’s rotationalvelocity
[23].

nav3 andnav5 represent two different conceptual components
of the navigation subsystem that carry out specific transformations.
nav52 is generated from a model equivalent tonav5, but using
different Real-Time Workshop configuration settings; consequent-
ly, the generated code is quite different. There are numerous other
subsystems not discussed here that use the same basic components.
nav3 andnav5 were chosen to minimize functional overlap, so
that they actually comprise most of the blocks in the subsystem. In
all cases, AUTOCERTwas provided with assumptions on the frames
and physical units of the input signals, and the aim of the verifica-
tion was to establish that the output, a quaternion state vector, is
in the correct coordinate frame. Table 3 shows the results. Note
that the size fornav3 andnav5 includesbothcomponents, since
Real-Time Workshop merges them into a single program.

nav5 andnav52 use the schemadcm ned ecef shown in
Figure 9, whereasnav3 uses a similar schemadcm ned nav (not
shown here, but see Figure 3 for the structure of the requiredDCM).
In total, frame safety requires 15 schemas. Of these, 7 describe
specific transformations likedcm ned ecef, which could be tran-
scribed directly from the literature. The remaining schemas formal-
ize the effects of the applied matrix operations, includingsome of
Matlab’s built-in functions. These schemas represent a substantial
domain analysis effort in a mathematically challenging domain—
it took approximately one month to analyze the given code base,
to understand the domain concepts and their implementation, and
to formulate the patterns and the required annotations. However,
about 90% of the effort was related to the domain analysis and
would have been required for a one-off safety proof of the code
base as well; only the remaining 10% was directly related to the
schema formulation.

The proof times shown in Table 3 are substantially longer than
for init andarray, reflecting the more complex mathematical rea-
soning that is required. As before, the inference time is negligible
in comparison to the proof times. The proofs of these VCs also
require a logical theory of matrix and frame algebra but thisis or-
thogonal to the development of the schemas, and is not discussed

Spec. |P | |A | N VC Tinf TVCG TATP

nav3 807 383 6 33 2.2 20.6 350
nav5 807 307 6 31 2.2 10.6 315
nav52 309 298 6 27 1.6 7.6 289

Table 3. Annotation inference: results forframe-property

here. However, the development of this logical theory in a form
that was suitable for the automated provers was actually themost
labor-intensive aspect of the certification.

5.3 Real-Time Workshop: Embedded Matlab

Embedded Matlab is a mathematical scripting language whichal-
lows the use of functions and equations in models. Variablesin the
equations typically represent vectors and matrices and therefore the
generated code is heavily loop-based, and quite different in charac-
ter from code generated from “pure” Simulink.

Here we illustrate theinit certification of code generated from
an Embedded Matlab model consisting of four matrix equations
from a Kalman filter. The generated code is about 150 LOC and
could be certified using just two schemas, of which one could even
be reused from AUTOBAYES/AUTOFILTER. The other schema
needed,for for assign lin (cf. Figures 1(c) and 6), is spe-
cific to Embedded Matlab.

for i0 := 0 to N
inv ∀ 0≤ i<i0, 0≤j≤N · xinit[i + j ∗ 2] = INIT do

for i1 := 0 to N
inv ∀ 0≤ i, j ≤N ·

(i < i0∨ (i = i0∧ j < i1)) ⇒ xinit[i + j ∗ 2] = INIT do
x11:= 0;
for i2 := 0 to N
inv ∀ 0≤ i, j ≤N · x11init = INIT ∧

(i<i0 ∨ (i= i0 ∧ j < i1))⇒ xinit[i + j ∗ 2] = INIT do
x11 +:= bv0[ i2+i1*2] * dv0[ i0+i2*2];

x[ i0+i1*2] := x11+R[i0+i1*2];
post∀ 0≤ i≤ i0, 0≤j≤N · xinit[i + j ∗ 2] = INIT

post∀ 0≤ i, j≤ i0 · xinit[i + j ∗ 2] = INIT

x11 := x[0];
d := x[1]*x [2] - x11*x[3];
x[0] := x[3] / d;
x[3] := x11 / d;
x[1] := -x[1] / d;
x[2] := -x[2] / d;
post∀ 0≤ i≤3 · xinit[i] = INIT

Figure 10. Annotated Embedded Matlab code

In Figure 10, we show the fragment which uses the two
schemas, including the annotations generated by the schemas; we
omitted constraints on the loop variables to simplify the presenta-
tion. The arrayx, which represents a 2x2-matrix, is first assigned
via a doubly-nested for-loop and then inverted via a sequence of
assignments. Since inference works backwards through the CFG,
the assignment sequence is annotated first. By settingx as its own
dependent variable, inference can then proceed on to the loop.

5.4 Optimizing Generators

One of the advantages of the annotation schemas is their ability to
specify patterns at a high-level and let the machinery handle the
variability in the code. Since we consider the code generator as a
black box, and make no assumptions about the way the code is
generated, but only rely on its final form, our approach is also ap-
plicable, therefore, to optimizing code generators. In particular, the



existing patterns are—in combination with the default pattern pre-
processing—insensitive to many commonly applied optimizations,
including common subexpression elimination, loop hoisting, and
loop fusion.

We have exploited this to handle optimizations in the Real-
Time Workshop generators for Simulink and Embedded Matlab.
Consider for example the unoptimized fragment on the left, which
is optimized (using loop hoisting and loop fusion) as shown on the
right:

for i := 1 to N do
for j := 1 to M do

a[i,j ] := 1/i*i;
for i := 1 to N do

for j := 1 to M do
b[i,j ] := a[i,j ]+1;

for i := 1 to N do
v := 1/i*i;
for j := 1 to M do

a[i,j ] := v;
b[ i,j ] := v+1;

In both cases, thefor for assign schema (which is a gen-
eralization of thefor assign schema to nested loops) is ap-
plicable. The reason thatfor for assign remains insensitive
to the optimization is the list wildcard patterns added during pre-
processing. These absorb the code fragments introduced or moved
into a new location by the optimizations. In the unoptimizedcase,
each pair of loops will become a definition node for the respective
initialized variable (with the other pair becoming a barrier node),
and the list wildcards will be set to empty. In the optimized case,
the fused loops will become the definition for both variables, and
the list wildcards will be matched against the assignments to v and
the other array-variable. Note that this causes the programfragment
(i.e., the fused loop) to be annotated multiple times (with different
annotations), but this is also possible for unoptimized code. In the
case of Embedded Matlab, thefor for assign lin schema is
also able to absorb the effects of these optimizations in thesame
way.

6. Related Work
Annotation inference, or invariant generation, is an active research
area. Approaches use both static and dynamic program analysis
methods, and can further be distinguished according to the cate-
gory of the inferred annotations: we can contrast type annotations,
where properties are checked by special type systems, with logi-
cal annotations, which are usually processed by a VCG and then a
general-purpose theorem prover. Our work is in the latter catego-
ry. However, these approaches generally hard-code specificdomain
knowledge and cannot be customized simply, if at all, in the same
way our approach allows.

Early approaches [11, 24] are based on predicate propagation
and use inference rules similar to a strongest post-condition calcu-
lus to push an initial logical annotation forward through the pro-
gram. Loops are handled by a combination of different heuristics
until a fixpoint is achieved. However, these methods still need an
initial annotation, and unlike our approach, the loop handling still
induces a search space at inference time. Moreover, the construct-
ed annotations are often only candidate invariants and needto be
validated (or refuted) during inference, because they increase the
search space.

Kovács and Jebelean [16] use techniques from algebraic com-
binatorics and polynomial algebra to compute polynomial relations
between variables that are assigned to within loops. These relations
are then turned into annotations and supplied to a VCG. The aim
is to characterize the behavior of loop variables in order toprove
the functional correctness of numeric procedures. They areable to
precisely characterize the class of loops for which they caninfer
annotations, although users must manually add any non-algebraic
assertions (e.g., inequalities) which are required. Abstract interpre-
tation has also been used to infer annotations in separationlogic

for pointer programs [17] although the techniques requiredthere
are fairly specialized and elaborate compared to our patterns.

Generate-and-test approaches use a fixed pattern catalogueto
construct candidate annotations and then try to validate (or refute)
them, using static or dynamic methods. Houdini [14] is a static
generate-and-test tool that uses ESC/Java to statically refute invalid
candidates. Houdini starts with a candidate set for the entire pro-
gram and then iterates until a fixpoint is reached. This increases the
computational effort required, and in order to keep the approach
tractable, the pattern catalogue is deliberately kept small. Hence,
Houdini is incomplete, and acts more as a debugging tool thanas
a certification tool. Daikon [12] is a dynamic annotation inference
tool. Its tester accepts all candidates that hold without falsification
but with a sufficient degree of support over the test suite. Inor-
der to verify the candidates, Daikon has also been combined with
ESC/Java [20]. However, like all dynamic annotation generation
techniques, it remains incomplete because it relies on a test suite to
generate the candidates and can thus miss annotations on paths that
are not executed often enough.

The specific problem of frame safety has been addressed by
Lowry et al. [18], who used a domain-specific type system to
verify the safety of abstract geometric calculations. The language
analyzed was quite simple, however, so that annotations could be
restricted to the declarations of the input variables, withno need
for the inference of patterns or intermediate annotations.Although
the underlying domain knowledge is similar to what we use forthe
frame example, this is a very specific solution, in contrast to our
“retargetable verifier”.

AOP is usually concerned with dynamic properties of programs
but Morgan et al. [19] give a language, inspired by description log-
ic, for describing static properties of programs. Their pattern lan-
guage has some similarities to ours, but is used to define point-
cuts that match against violations of design rules, and the advice is
simply the corresponding error message. Since they are concerned
with localizing errors, there is no need to infer annotations or prop-
agate information throughout the program. Our pattern language
also captures static properties but, in contrast, is essentially used to
match against fragments which establish the specified property.

Antkiewicz et al. [4] use code queries, which are approxima-
tions to structural and behavioral patterns, in order to reverse engi-
neer framework-specific models from framework code. It is similar
to our work in the sense that we use patterns to reverse engineer
“logical structure”.

Conventional static analysis tools based on abstract interpreta-
tion, such as PolySpace [2], are notoriously inaccurate. Although
improvements have been made (e.g., with Astree [7]), such tools
can only handle relatively simple safety properties, and are unable
to produce the detailed explanations AUTOCERT provides in the
form of proofs, safety cases [5], and safety documents (workin
progress).

Coccinelle [6] uses model checking over the CFG to identi-
fy source code fragments that need modification in response to a
patch. The underlying logic CTL-VW allows both universallyand
existentially quantified variables (compared to the existential inter-
pretation of the meta-variables in our pattern language), but it is
restricted to control flow only, and does not take any data flowinto
account.

7. Conclusions and Future Work
We have presented a declarative annotation schema languageand
a schema compiler which, together with a generic annotationin-
ference engine, forms the AUTOCERT system. We have developed
a set of schemas which customizes AUTOCERT for certifying the
frame safety of navigation code generated from Simulink models.
Other sets of schemas support the certification of code generat-



ed from Embedded Matlab, as well as the entire range of models
and configurations (i.e., algorithmic variants and optimizations) for
AUTOBAYES and AUTOFILTER. The underlying inference tech-
nique is independent of the generator, but relies on the idiomatic
structure of the generated code. For the examples reported in this
paper, we were able to identify the necessary code idioms; how-
ever, more work is necessary to determine how well the technique
works for other properties and other generators.

This paper continues previous work [10] and represents a sig-
nificant advance in both power and expressivity of the technique.
By raising the level of abstraction at which annotation knowledge
is expressed, we are able to concisely capture many variations of
the underlying code idioms. In particular, we can easily deal with
optimizations which obscure low-level code structure.

Our system currently comprises approximately 50 schemas for
thearray, init, andframesafety properties. We are developing ad-
ditional sets of schemas and extending the schema language itself
to support the certification of other properties and of code generat-
ed from a wider range of models. There are various physical and
geometric properties that can be analyzed similarly to coordinate
frames, such as the correct use of Euler angles, quaternion hand-
edness, and so on, and we plan to adapt the frame schemas for
those properties. Currently, the inference is restricted to an intra-
procedural analysis, although it can handle calls to annotated li-
brary procedures. This is sufficient for the generators we have used
so far, but we are planning to extend the system towards an inter-
procedural inference.

Finally, although our emphasis so far has been on certifying
safety, the schema language and inference engine are not limited
to this and, in fact, several of the schemas we have presented
here are actually verifying full functional correctness ofcertain
fragments in order to establish safety. For example, in order to
verify frame safety for the examples above, we need to verifythe
correctness of the underlying matrix transformations. Similarly, the
various DCM schemas are effectively functional verifications of
those constructions. We intend to further explore the possibilities
for functional verification. Likewise, there is no need to restrict
AUTOCERT tool to automatically generated code—it can just as
well be applied to manually written code, with the proviso that the
less idiomatic the code is, the less accurate the analysis will be, and
we intend to explore this avenue as well.
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